/

A researcher notices a positive correlation between the height of a plant and nutrient concentration over time. Based on this observation, what conclusion does he reach?

A. The height of a plant increases in the absence and presence of the nutrients

B. When the amount of nutrients available to the plant decreases, its height increases.

C. The amount of nutrients available to a plant is independent of how tall the plant gets

D. When the amount of nutrients available to the plant increases, its height also increases.

Answer Explanation:

Because this is a positive correlation, if the nutrient concentration increases or decreases, plant height will either increase or decrease accordingly.

While analyzing data, scientists tend to observe cause-and-effect relationships. These relationships can be quantified using correlations. Correlations measure the amount of linear association between two variables. There are three types of correlations:

Positive correlation: 
As one variable increases, the other variable also increases. This is also known as a direct correlation.

Negative correlation: 
As one variable increases, the other decreases. The opposite is true if one variable decreases. A negative correlation is also known as an inverse correlation or an indirect correlation.

No correlation: 
There is no connection or relationship between two variables.

Therefore, the Correct Answer is D.

More Questions on TEAS 7 Science

  • Q #1: Which of the following is supported by the cell theory?

    A. Cells are alive and recognized as the building blocks for life.

    B. Scientists can identify and differentiate cells by using a microscope

    C. Cells are produced from existing cells using meiosis instead of mitosis.

    D. Living things are composed of a single cell that remains undifferentiated

    Answer Explanation

    After scientists were able to view cells under the microscope they formulated the cell theory. One part of this theory concluded that all cells are alive. They also represent the basic unit of life.

    All living things are made of cells. Cells are the smallest structural units and basic building blocks of living things. Cells contain everything necessary to keep living things alive. Varying in size and shape, cells carry out specialized functions. This theory, or in-depth explanation, about cells consists of three parts:

    • All living things are composed of one or more cells.
    • Cells are alive and represent the basic unit of life.
    • All cells are produced from pre-existing cells.

     

  • Q #2: Which of the following is a component of a chromosome?

    A. Centromere

    B. Gamete

    C. Homologue

    D. Ribose

    Answer Explanation

    The protein disc that holds two sister chromatids together is what collectively makes a chromosome. A gene is a segment of DNA, deoxyribonucleic acid, which transmits information from parent to offspring. A single molecule of DNA has thousands of genes. A chromosome is a rod-shaped structure that forms when a single DNA molecule and its associated proteins coil tightly before cell division.

    Chromosomes have two components:

    • Chromatids: two copies of each chromosome
    • Centromeres: protein discs that attach the chromatids together

    Human cells have 23 sets of different chromosomes. The two copies of each chromosome are called homologous chromosomes, or homologues. An offspring receives one homologue from each parent. When a cell contains two homologues of each chromosome, it is termed diploid (2n). A haploid (n) cell contains only one homologue of each chromosome. The only haploid cells humans have are the sperm and eggs cells known as gametes.

  • Q #3: Blood oxygen levels are most likely low when blood _____.

    A. leaves the aorta

    B. fills the right atrium

    C. reaches body tissues

    D. flows through arteries

    Answer Explanation

    Blood continually flows in one direction, beginning in the heart and proceeding to the arteries, arterioles, and capillaries. When blood reaches the capillaries, exchanges occur between blood and tissues. After this exchange happens, blood is collected into venules, which feed into veins and eventually flow back to the heart’s atrium. The heart must relax between two heartbeats for blood circulation to begin.

    Two types of circulatory processes occur in the body:

    Systemic circulation

    • The pulmonary vein pushes oxygenated blood into the left atrium.
    • As the atrium relaxes, oxygenated blood drains into the left ventricle through the mitral valve. 3. The left ventricle pumps oxygenated blood to the aorta.
    • Blood travels through the arteries and arterioles before reaching the capillaries that surround the tissues.

    Pulmonary circulation

    • Two major veins, the Superior Vena Cava and the Inferior Vena Cava, brings deoxygenated blood from the upper and lower half of the body.
    • Deoxygenated blood is pooled into the right atrium and then sent into the right ventricle through the tricuspid valve, which prevents blood from flowing backward.
    • The right ventricle contracts, causing the blood to be pushed through the pulmonary valve into the pulmonary artery.
    • Deoxygenated blood becomes oxygenated in the lungs.
    • Oxygenated blood returns from the lungs to the left atrium through the pulmonary veins.

  • Q #4: What type of bond forms between nitrogen and oxygen, and why?

    A. Ionic, because electrons are shared

    B. Covalent, because electrons are shared

    C. Ionic, because electrons are transferred

    D. Covalent, because electrons are transferred

    Answer Explanation

    Nitrogen and oxygen are both nonmetals, which means they will share electrons in a covalent bond. For example, two oxygen atoms form a double bond, in which two pairs of electrons (four electrons total) are shared. Similarly, two nitrogen atoms form a molecule with a triple bond, in which three pairs of electrons (six electrons total) are shared. 

  • Q #5: In which state of matter are the intermolecular forces between particles in a substance the strongest?

    A. Gas

    B. Liquid

    C. Plasma

    D. Solid

    Answer Explanation

    In solids, particles are usually closer together than in other states of matter because of the strong cohesive forces between the particles.

    • Solids, liquids, gases, and plasmas differ from one another in the amount of energy that the particles have and the strength of the cohesive forces that hold the particles together.
    • Cohesion is the tendency of particles of the same kind to stick to each other.
    • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

  • Q #6: A person is diagnosed as having acidosis, a condition in which the blood pH is below 7.45. What does the doctor most likely conclude?

    A. Too much carbon dioxide is found in the blood.

    B. Highly oxygenated blood circulates through the body

    C. A blockage prevents blood from leaving the pulmonary artery

    D. The nasal cavity has a difficult time clearing particles from the air.

    Answer Explanation

    Acidosis is when the body fluids contain too much acid, or low pH. The kidneys and lungs are unable to keep the body’s pH in balance. Acidosis is the result when there is too much loss of bicarbonate from the blood known as metabolic acidosis, or due to a buildup of carbon dioxide in the blood due to poor lung function, known as respiratory acidosis. It is the opposite of alkalosis, which is a condition in which there is too much base in the body fluids.

  • Q #7: What type of reaction is described by the following equation? ZnBr2(aq) + 2KOH(aq) → Zn(OH)2(s) + 2KBr(aq)

    A. Synthesis

    B. Decomposition

    C. Single-Replacement

    D. Double-Replacement

    Answer Explanation

    In this reaction, two elements are trading places hence double-replacement. In the reactants, zinc and bromide ions are together, and potassium and hydroxide ions are together. In the products, zinc and hydroxide ions are together, and potassium and bromide ions are together.

  • Q #8: A student notices a pattern of stripes on five tigers. Each of the five tigers has the same stripe pattern. Using his inductive reasoning, what does he logically assume based on this information?

    A. The pattern continues to change over time.

    B. Natural adaptations cause this pattern to occur

    C. Each offspring will have the same stripe pattern

    D. Ancestors of the tigers have different stripe patterns

    Answer Explanation

    Inductive reasoning involves making specific observations and using them to make broad statements. The student observes that all of the tigers have the same stripe pattern. He can use this observation to make the broad statement that all the tigers’ offspring will have the same stripe pattern.

    Inductive reasoning involves drawing a general conclusion from specific observations. This form of reasoning is referred to as the “from the bottom up” approach. Information gathered from specific observations can be used to make a general conclusion about the topic under investigation. In other words, conclusions are based on observed patterns in data.

  • Q #9: Which of the following determines the strength of an acidic solution?

    A. Litmus paper that turns red

    B. Litmus paper that turns blue

    C. Measured pH value equal to 7

    D. Measured pH value less than 7

    Answer Explanation

    Both litmus paper and a pH scale can be used to indicate whether a solution is acidic. However, a pH scale can also determine the strength of an acid.

    Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.

  • Q #10: Which is true regarding the Urinary system?

    A. Kidneys makes urine, Kidney help regulate water balance.

    B. As a person ages, kidney tissue and filtration capacity increase, Regulates levels of electrolytes such as sodium and potassium.

    C. Eliminates metabolic wastes., Kidneys makes urine., Kidney help regulate water balance.

    D. Kidney help regulate water balance, Regulates levels of electrolytes such as sodium and potassium, Eliminates metabolic wastes

    Answer Explanation

    Kidneys makes urine is incorrect. Kidneys do not make urine. They help regulate water balance, regulate levels of electrolytes such as sodium and potassium, and eliminate metabolic wastes. Urine is a byproduct of these functions.

    As a person ages, kidney tissue and filtration capacity increase is incorrect. As a person ages, the kidneys and bladder change. This can affect functions such as bladder control and how well the kidneys filter blood. Kidney changes range from a decrease in kidney tissue to decreased filtration capacity.

    Kidneys help regulate water balance is correct. Kidneys help regulate water balance, regulate levels of electrolytes such as sodium and potassium, and eliminate metabolic wastes. Urine is a byproduct of these functions.

    Regulates levels of electrolytes such as sodium and potassium is correct. There must be a continual balance of water and salt in the blood. The urinary system, specifically the kidneys, help maintain this balance. It also balances levels of metabolites or electrolytes such as sodium, potassium, and calcium.

    Eliminates metabolic wastes is correct. Urea, creatinine, uric acid, and ammonium are the primary types of nitrogenous wastes excreted from the body. The urinary system also detects and excretes excess water from the blood and out of the body.