/

In the following single-replacement reaction, ______ replaces ______. Cl2+2NaI→2NaCl+I2

A. sodium, iodine

B. chlorine, iodine

C. chlorine, sodium

D. sodium, chlorine

Answer Explanation:

In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: Where is skeletal muscle found?

    A. Inside the heart

    B. Attached to bone

    C. Lining the walls of the bladder

    D. Within the gastrointestinal tract

    Answer Explanation

    Skeletal muscle: This muscle cell is striated, long, and cylindrical. There are many nuclei in a skeletal muscle cell. Attached to bones in the body, skeletal muscle contracts voluntarily, meaning that it is under conscious control.

    Smooth muscle: This muscle consists of nonstriated muscle cells that are spindle-shaped. Like cardiac muscle cells, smooth muscle cells contain one nucleus. This muscle type is found in the walls of internal organs like the bladder and stomach. Smooth muscle contraction is involuntary and controlled by the autonomic nervous system.

    Cardiac muscle: This muscle consists of muscle cells that are striated, short, and branched. These cells contain one nucleus, are branched, and are rectangular. Cardiac muscle contraction is an involuntary process, which is why it is under the control of the autonomic nervous system. This muscle is found in the walls of the heart.

  • Q #2: Which sequence describes the hierarchy level of biological organization?

    A. Kingdom, phylum, class, order, family, genus, and species

    B. Genus, class, kingdom, species, order, phylum, and family

    C. Genus, class, kingdom, species, order, phylum, and family

    D. Species, kingdom, genus, class, family, phylum, and order

    Answer Explanation

    Taxonomy is the process of classifying, describing, and naming organisms. There are seven levels in the Linnaean taxonomic system, starting with the broadest level, kingdom, and ending with the species level. For example, in the image the genus level contains two types of bears, but the species level shows one type. Additionally, organisms in each level are found in the level above it. For example, organisms in the order level are part of the class level. This classification system is based on physical similarities across living things. It does not account for molecular or genetic similarities.

  • Q #3: Why did it take many years for the cell theory to be developed?

    A. Advancements in microscopy took place slowly.

    B. Cells were difficult to isolate for experimental analysis

    C. Researchers believed a cell formed from preexisting cells

    D. Scientists already proved that cells were essential for life.

    Answer Explanation

    Robert Hooke discovered the first cells in the mid-eighteenth century. The cell theory is a theory because it is supported by a significant number of experimental findings. The cell theory took many years to be developed because microscopes were not powerful enough to make such observations.

    This theory, or in-depth explanation, about cells consists of three parts:

    • All living things are composed of one or more cells.
    • Cells are alive and represent the basic unit of life.
    • All cells are produced from pre-existing cells.

     

  • Q #4: Which statement best represents Mendel’s experiments with garden peas?

    A. As a result, Mendel developed several theories that have since been disproved.

    B. Mendel realized he was on an incorrect track, which led him to other experimental media

    C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

    D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

    Answer Explanation

    Mendel developed theories of genetics that scientists around the world use today.

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.

  • Q #5: Which part of the digestive system comes before the stomach?

    A. mouth

    B. esophagus

    C. ileum

    D. colon

    Answer Explanation

    Oral Cavity is the first part of the digestive system. It is bounded by the lips and cheeks and contains the teeth and tongue. Its primary function is to masticate, or chew, and moisten the food.

    Pharynx, or throat, connects the mouth to the esophagus.

    Esophagus is a muscular tube about 25 centimeters long. Food travels down it to the cardiac sphincter of the stomach.

    Pyloric sphincter. The exit of the stomach.

    Small intestine is about 6 meters long and consists of three parts: duodenum, jejunum, and ileum.

    Large intestine, consists of the cecum, colon, rectum, and anal canal. The cecum is located where the small and large intestine meet. The primary function of the large intestine is to compress the waste and collect any excess water that can be recycled.

    Colon is about 1.5 to 1.8 meters long and consists of four parts: the ascending, transverse, descending, and sigmoid colon.

     

  • Q #6: Which is classified as a type of acid-base reaction that produces a salt?

    A. Combination

    B. Decomposition

    C. Hydrolysis

    D. Neutralization

    Answer Explanation

    A neutralization reaction is a type of acid-base reaction where an acid and base react to form a salt and water. 

    In an aqueous solution, a base increases the hydroxide concentration (OH–), while an acid increases the hydrogen ion (H+) concentration. Sometimes, neutralization reactions also occur. This type of reaction happens when an acid and a base react with each other to form water and salt. Salt is typically defined as an ionic compound that includes any cation except H+ and any anion except OH–. Consider the following example of a neutralization reaction between hydrobromic acid (HBr) and potassium hydroxide (KOH).

    HBr+KOH→KBr+H2O

    Not all neutralization reactions proceed in the manner where all reactants are in the aqueous phase. In some chemical reactions, one reactant may be a solid. The neutralization reaction can still proceed to completion.

  • Q #7: What standard is used to make comparisons in experiments?

    A. Sample size

    B. Control group

    C. Dependent variable

    D. Independent variable

    Answer Explanation

    A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

    Recall that these make up the scientific method, described below:

    • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
    • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
    • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
    • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
      • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
    • Observe: Analyze data collected during an experiment to observe patterns. 
      • Example: Analyze the differences between the numbers of particles collected in terms of size.
    • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
    • Communicate: Report findings so others can replicate and verify the results.

  • Q #8: When would a cell most likely contain the most nucleotides?

    A. S

    B. G1

    C. M

    D. G2

    Answer Explanation

    A cell copies its DNA during the S phase, and nucleotides are the building blocks of DNA. Thus, the step preceding the S phase, the G1 phase, is the phase of the cell cycle when the cell would contain the most nucleotides.

    For a cell to divide into more cells, it must grow, copy its DNA, and produce new daughter cells. The cell cycle regulates cellular division. This process can either prevent a cell from dividing or trigger it to start dividing.

    The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

    • G1: The first gap phase, during which the cell prepares to copy its DNA
    • S: The synthesis phase, during which DNA is copied
    • G2 : The second gap phase, during which the cell prepares for cell division

    It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.

  • Q #9: The sequence of amino acids in a gene determines

    A. the primary structure of a codon

    B. the primary structure of a protein

    C. the primary structure of a nucleotide

    D. the primary structure of a nucleic acid.

    Answer Explanation

    The sequence of amino acids in a gene determines the primary structure of a protein. The components necessary for translation are located in the cytoplasm. Translation is the making of proteins by mRNA binding to a ribosome with the start codon that initiates the production of amino acids. A peptide bond forms and connects the amino acids together. The sequence of amino acids determines the protein’s structure, which determines its function.

  • Q #10: Fertilization (the fusing of one sperm and an ovum) results in a(n) _____.

    A. embryo

    B. fetus

    C. infant

    D. zygote

    Answer Explanation

    Human intercourse consists of the male introducing sperm into the female’s reproductive system. Sperm may then pass through the female’s reproductive system to the Fallopian tubes where one sperm fertilizes an ovum, creating a zygote. The zygote passes out of the Fallopian tube and implants into the uterine wall to begin gestation. Over nine months, the zygote develops and grows into an embryo and then a fetus. An infant is the baby that is born.