/

In which state of matter are the intermolecular forces between particles in a substance the strongest?

A. Gas

B. Liquid

C. Plasma

D. Solid

Answer Explanation:

In solids, particles are usually closer together than in other states of matter because of the strong cohesive forces between the particles.

  • Solids, liquids, gases, and plasmas differ from one another in the amount of energy that the particles have and the strength of the cohesive forces that hold the particles together.
  • Cohesion is the tendency of particles of the same kind to stick to each other.
  • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

Therefore, the Correct Answer is D.

More Questions on TEAS 7 Science

  • Q #1: What phase is the cell cycle part of?

    A. Interphase

    B. Metaphase

    C. Prophase

    D. Telophase

    Answer Explanation

    Before mitosis or meiosis occurs, interphase must happen. This is when the cell cycle takes place. The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase. 

  • Q #2: What raw inorganic material would an autotroph most likely use to create chemical energy for growth?

    A. carbon dioxide

    B. minerals in soil

    C. decaying matter

    D. sugar molecules

    Answer Explanation

    Autotrophs are organisms that use basic raw materials in nature, like the sun, to make energy-rich biomolecules. Minerals are naturally inorganic.

    Autotrophs are organisms that make energy-rich biomolecules from raw material in nature. They do this by using basic energy sources such the sun. This explains why most autotrophs rely on photosynthesis to transform sunlight into usable food that can produce energy necessary for life. Plants and certain species of bacteria are autotrophs.

  • Q #3: Where is skeletal muscle found?

    A. Inside the heart

    B. Attached to bone

    C. Lining the walls of the bladder

    D. Within the gastrointestinal tract

    Answer Explanation

    Skeletal muscle: This muscle cell is striated, long, and cylindrical. There are many nuclei in a skeletal muscle cell. Attached to bones in the body, skeletal muscle contracts voluntarily, meaning that it is under conscious control.

    Smooth muscle: This muscle consists of nonstriated muscle cells that are spindle-shaped. Like cardiac muscle cells, smooth muscle cells contain one nucleus. This muscle type is found in the walls of internal organs like the bladder and stomach. Smooth muscle contraction is involuntary and controlled by the autonomic nervous system.

    Cardiac muscle: This muscle consists of muscle cells that are striated, short, and branched. These cells contain one nucleus, are branched, and are rectangular. Cardiac muscle contraction is an involuntary process, which is why it is under the control of the autonomic nervous system. This muscle is found in the walls of the heart.

  • Q #4: The sequence of amino acids in a gene determines

    A. the primary structure of a codon

    B. the primary structure of a protein

    C. the primary structure of a nucleotide

    D. the primary structure of a nucleic acid.

    Answer Explanation

    The sequence of amino acids in a gene determines the primary structure of a protein. The components necessary for translation are located in the cytoplasm. Translation is the making of proteins by mRNA binding to a ribosome with the start codon that initiates the production of amino acids. A peptide bond forms and connects the amino acids together. The sequence of amino acids determines the protein’s structure, which determines its function.

  • Q #5: After food has been masticated in the oral cavity, where does it go next?

    A. Colon

    B. Liver

    C. Pancreas

    D. Pharynx

    Answer Explanation

    Once the food has been masticated in the oral cavity (mouth), it is then swallowed and travels back into the pharynx down into the esophagus, which leads into the stomach.

  • Q #6: As soon as an invader, known as a(n) _____, enters the body, the body begins to fight.

    A. antibody

    B. pathogen

    C. trigger

    D. vaccination

    Answer Explanation

    Pathogen is an infectious foreign body that enters the body and causes disease or illness to the person. There are five types of pathogens: viruses, bacteria, fungi, protozoa, and worms. Pathogens have antigen proteins found on their surface and are unique to each pathogen.

    Antibody is a protein produced by the body’s immune system when it detects harmful substances (antigens). There are many different antibodies found in the body. Each one is unique and protects the body against the specific antigen that it detects at any given time. If there are no antibodies for a specific antigen, the more likely you are to develop an illness.

    Vaccinations are the introduction of a dead or disabled pathogen or of a harmless microbe with the protein of a pathogen on its surface into the body. Often administered through needle injection, to stimulate the immune system to produce immunity to a specific disease Immunity protects the body from a disease when exposed to it.

    There are four types of immunity: natural/passive, natural/active, artificial/passive, and artificial/ active.

    • Natural/passive – Babies receive immunities from breastmilk.
    • Natural/active – The body produces antibodies to combat an illness when a person becomes sick.
    • Artificial/passive – This immunity is temporary and requires doses of serum to maintain the immunity.
    • Artificial/active – A vaccination provides artificial/active immunity.

  • Q #7: When would a cell most likely contain the most nucleotides?

    A. S

    B. G1

    C. M

    D. G2

    Answer Explanation

    A cell copies its DNA during the S phase, and nucleotides are the building blocks of DNA. Thus, the step preceding the S phase, the G1 phase, is the phase of the cell cycle when the cell would contain the most nucleotides.

    For a cell to divide into more cells, it must grow, copy its DNA, and produce new daughter cells. The cell cycle regulates cellular division. This process can either prevent a cell from dividing or trigger it to start dividing.

    The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

    • G1: The first gap phase, during which the cell prepares to copy its DNA
    • S: The synthesis phase, during which DNA is copied
    • G2 : The second gap phase, during which the cell prepares for cell division

    It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.

  • Q #8: An atom has 28 protons, 32 neutrons, and 28 electrons. What is the name of this isotope?

    A. Nickel-32

    B. Nickel-60

    C. Germanium-56

    D. Germanium-60

    Answer Explanation

    The number of protons, 28, gives the atomic number, which identifies this atom as nickel. The mass is the number after the dash in the isotope name, which is determined by adding the numbers of protons and neutrons (28 + 32 = 60).

  • Q #9: During which of the following phase changes will the cohesion between the particles in a substance decrease?

    A. Condensation

    B. Deposition

    C. Freezing

    D. Vaporization

    Answer Explanation

    If the cohesion between particles decreases, then the particles must be undergoing a phase change that allows particles to move farther apart. This happens when a substance vaporizes and turns from liquid to gas. Any phase change that moves to the right in the diagram above requires energy to be added to the system because the substance has more energy at the end of the phase change. The phase changes are meltingvaporization (boiling), and sublimation. When energy is added, particles move faster and can break away from each other more easily as they move to a state of matter with a higher amount of energy. This is most commonly done by heating the substance. 

  • Q #10: Which part of the digestive system comes before the stomach?

    A. mouth

    B. esophagus

    C. ileum

    D. colon

    Answer Explanation

    Oral Cavity is the first part of the digestive system. It is bounded by the lips and cheeks and contains the teeth and tongue. Its primary function is to masticate, or chew, and moisten the food.

    Pharynx, or throat, connects the mouth to the esophagus.

    Esophagus is a muscular tube about 25 centimeters long. Food travels down it to the cardiac sphincter of the stomach.

    Pyloric sphincter. The exit of the stomach.

    Small intestine is about 6 meters long and consists of three parts: duodenum, jejunum, and ileum.

    Large intestine, consists of the cecum, colon, rectum, and anal canal. The cecum is located where the small and large intestine meet. The primary function of the large intestine is to compress the waste and collect any excess water that can be recycled.

    Colon is about 1.5 to 1.8 meters long and consists of four parts: the ascending, transverse, descending, and sigmoid colon.