/

What is the difference between innate immunity and adaptive immunity?

A. Innate immunity is present at birth and provides immediate, non-specific protection against pathogens while adaptive immunity is developed over time and provides specific protection against particular pathogens.

B. Innate immunity involves the recognition of specific pathogens while adaptive immunity involves the recognition of general paterns of pathogens.

C. Innate immunity involves the production of antibodies while adaptive immunity involves the activation of phagocytes.

D. Innate immunity is activated by the lymphatic system while adaptive immunity is activated by the circulatory system.

Answer Explanation:

Innate immunity is the first line of defense against pathogens and is present at birth. It provides immediate, non-specific protection against a wide range of pathogens, including bacteria, viruses, and fungi. Innate immunity involves physical barriers, such as skin and mucous membranes, as well as cellular and molecular components, such as phagocytes and cytokines.

Adaptive immunity, on the other hand, is developed over time and provides specific protection against particular pathogens. It involves the recognition of antigens, which are specific components of pathogens, by immune cells called lymphocytes. The lymphocytes then produce antibodies that are specific to the antigens, allowing for a targeted response to the pathogen. This process takes time to develop, as the immune system needs to encounter the pathogen and mount a response.

Overall, innate immunity provides immediate, non-specific protection while adaptive immunity provides specific protection that is tailored to the particular pathogen. Both forms of immunity work together to protect the body against pathogens.

Therefore, the Correct Answer is A.

More Questions on TEAS 7 Science

  • Q #1: Which of the following is responsible for carrying amino acids to ribosomes during protein synthesis?

    A. tRNA

    B. mRNA

    C. rRNA

    D. DNA

    Answer Explanation

    Transfer RNA (tRNA) is responsible for carrying amino acids to ribosomes during protein synthesis. Each tRNA molecule has a specific anticodon that matches a codon on the messenger RNA (mRNA) molecule. The tRNA molecule binds to the mRNA codon and brings the corresponding amino acid to the ribosome, where it is added to the growing polypeptide chain.

     
      Transfer RNA - Wikipedia

     

     

  • Q #2: Which of the following is an example of a double-blind study?

    A. Participants are randomly assigned to a treatment group or a control group

    B. Participants and researchers both know which group participants are assigned to

    C. Participants do not know which group they are assigned to, but researchers do

    D. Both participants and researchers do not know which group participants are assigned to

    Answer Explanation

    A double-blind study is a research design in which neither the participants nor the researchers know which group participants are assigned to. This is done to minimize bias and ensure that the results of the study are as objective as possible. In a double-blind study, the treatment and control groups are randomly assigned, and the participants and researchers are unaware of which group each participant is assigned to. Option a) is an example of a randomized controlled trial, which is a common research design, but it is not necessarily double-blind. Option b) is an example of an open-label study, in which both the participants and the researchers know which group each participant is assigned to. Option c) is an example of a single-blind study, in which the participants do not know which group they are assigned to, but the researchers do.

    Single, Double & Triple Blind Study | Definition & Examples

     

  • Q #3: What are the steps involved in the scientific method?

    A. Observation, hypothesis, prediction, experimentation, analysis, conclusion.

    B. Hypothesis, observation, prediction, experimentation, analysis, conclusion.

    C. Prediction, observation, experimentation, analysis, conclusion, hypothesis.

    D. Observation, data collection, analysis, experimentation, hypothesis, conclusion.

    Answer Explanation

    The scientific method is a systematic approach used to answer questions or test hypotheses about the natural world. The steps involved in the scientific method are:

    1. Observation: This is the first step in the scientific method. It involves observing a phenomenon or a problem and gathering information about it.
    2. Hypothesis: After making an observation, a scientist forms a hypothesis, which is a tentative explanation for the phenomenon or problem.
    3. Prediction: Based on the hypothesis, the scientist makes a prediction about what will happen in an experiment or what they will observe.
    4. Experimentation: The scientist designs and conducts an experiment to test the hypothesis and prediction.
    5. Analysis: The data collected from the experiment are analyzed to determine if they support or refute the hypothesis.
    6. Conclusion: Based on the analysis of the data, the scientist draws a conclusion about whether the hypothesis is supported or refuted.

    Option b) is incorrect because it starts with hypothesis before observation. Option c) is incorrect because prediction comes before experimentation. Option d) is incorrect because hypothesis comes after observation and data collection.

     
      What Are The Steps In The Scientific Method?

     

     

     

  • Q #4: Which of the following describes the function of ligaments?

    A. Ligaments attach skeletal muscles to bone

    B. Ligaments attach two bones

    C. Ligaments attach bones to tendons

    D. Ligaments attach skeletal muscles to tendons

    Answer Explanation

    Ligaments are tough bands of fibrous tissue that connect two bones together in a joint. They provide stability and support to the joint, preventing excessive movement and helping to maintain proper alignment of the bones.

    What is the term for a long, flexible band of connective tissue that  connects two bones across a joint? | Socratic

  • Q #5: Which of the following is NOT one of the four primary tissue types found in the human body?

    A. Epithelial

    B. Nervous

    C. Connective

    D. Exocrine glandular

    Answer Explanation

    Exocrine glandular is not one of the four primary tissue types found in the human body. The four primary tissue types are epithelial, nervous, connective, and muscle.

     
      Tissue types: MedlinePlus Medical Encyclopedia Image

     

     

  • Q #6: Which of the following statements is true regarding vaccines?

    A. Vaccines can cause the disease they are designed to protect against

    B. Vaccines work by providing passive immunity to the individual

    C. Vaccines work by exposing the individual to a weakened or inactivated form of the pathogen

    D. Vaccines only provide protection against bacterial infections

    Answer Explanation

    Vaccines are a type of preventative medicine that work by exposing the individual to a weakened or inactivated form of a pathogen (such as a virus or bacteria) or to a piece of the pathogen (such as a protein or sugar) that triggers an immune response in the body. This exposure allows the body to develop immunity to the pathogen without getting sick from the full-blown disease. Once the immune system has been primed, it can recognize and quickly respond to the pathogen if it is encountered again in the future, providing protection against the disease.

    It is a common misconception that vaccines can cause the disease they are designed to protect against. This is not true. While some vaccines may cause mild symptoms such as a low-grade fever or soreness at the injection site, they do not cause the full-blown disease.

    Vaccines provide active immunity, meaning that the body produces its own antibodies against the pathogen, rather than receiving pre-made antibodies as in passive immunity. Additionally, vaccines can be effective against both bacterial and viral infections, depending on the specific vaccine.

    Everything You Need to Know About Vaccinations

     

  • Q #7: Which of the following is a chemical property of a substance?

    A. Density

    B. Melting point

    C. Boiling point

    D. Reactivity with acid

    Answer Explanation

    Chemical properties are characteristics of a substance that describe its ability to undergo a chemical change or reaction with another substance.

    Reactivity with acid is a chemical property because it describes how a substance will react with an acid to produce a new substance. Density, melting point, and boiling point are physical properties that describe how a substance behaves under certain conditions but do not involve a chemical change or reaction.

  • Q #8: During embryonic development, which of the following germ layers forms the nervous system?

    A. Ectoderm

    B. Endoderm

    C. Mesoderm

    D. Exoderm

    Answer Explanation

    The three germ layers that form during embryonic development are the ectoderm, mesoderm, and endoderm. The ectoderm is the outermost layer, and it gives rise to the skin, hair, nails, and nervous system. The nervous system develops from a specialized region of the ectoderm called the neural plate, which invaginates to form the neural tube. The neural tube ultimately gives rise to the brain and spinal cord, which make up the central nervous system, as well as the peripheral nervous system. The endoderm gives rise to the lining of the digestive and respiratory tracts, while the mesoderm gives rise to the musculoskeletal system, circulatory system, and several other organs. The exoderm is not a germ layer and does not exist during embryonic development.

    Ectoderm - Definition, Formation, Function and Quiz | Biology Dictionary

     

  • Q #9: What is the name of the valve that separates the left atrium and left ventricle in the heart?

    A. Aortic valve

    B. Mitral valve

    C. Tricuspid valve

    D. Pulmonary valve

    Answer Explanation

    The mitral valve is located between the left atrium and left ventricle of the heart and helps to regulate the flow of blood between these chambers. It consists of two leaflets or flaps that open and close in response to changes in pressure as the heart beats.

    During diastole, when the heart is relaxed and filling with blood, the mitral valve opens to allow blood to flow from the left atrium into the left ventricle. During systole, when the heart contracts to pump blood out of the left ventricle and into the systemic circulation, the mitral valve closes to prevent backflow of blood into the left atrium.

    The mitral valve is one of four valves in the heart that help to ensure the unidirectional flow of blood through the heart and the rest of the circulatory system. Problems with the mitral valve, such as mitral valve prolapse or mitral stenosis, can lead to a range of symptoms and complications, including shortness of breath, fatigue, chest pain, and heart failure.

     
      Name the valve between the left atrium and the left ventricle and give its  significance.

     

     

  • Q #10: What is the difference between isotonic and isometric muscle contractions?

    A. Isotonic contractions produce no movement while isometric contractions produce movement.

    B. Isotonic contractions produce movement while isometric contractions produce no movement.

    C. Isotonic contractions generate tension in the muscle while isometric contractions involve shortening of the muscle fibers.

    D. Isotonic contractions involve contraction of individual muscle fibers while isometric contractions involve the entire muscle.

    Answer Explanation

    Isotonic and isometric contractions are two types of muscle contractions that differ in the amount of force produced and the movement of the muscle. In isotonic contractions, the muscle changes length and produces movement, such as lifting a weight. The force generated by the muscle remains constant throughout the movement. Isotonic contractions can be further classified as concentric contractions, in which the muscle shortens as it contracts, and eccentric contractions, in which the muscle lengthens as it contracts.

    In contrast, isometric contractions occur when the muscle generates force without changing its length or producing movement. For example, holding a weight in a fixed position without moving it requires an isometric contraction. In an isometric contraction, the force generated by the muscle increases up to a maximum and then remains constant. Isometric contractions can be used to build strength and endurance in the muscle, but they do not produce movement.

     
      What's The Difference Between Isometric and Isotonic Muscle Contractions?