/

What is the final structure through which urine must travel to empty out of the body?

A. Bladder

B. Kidney

C. Ureter

D. Urethra

Answer Explanation:

The primary organ of the urinary system is the kidney. Blood from the heart flows through the kidneys via the renal artery. As blood drains from the kidney, it exits through a series of veins, the most prominent of which is the renal vein. When urine is produced, it does not drain through the tubes through which blood flows. Rather, urine flows through two ureters before emptying into the urinary bladder.

The following steps outline how the urinary system works:

  • Kidney filters and excretes wastes from blood, producing urine.
  • Urine flows down the ureters.
  • Urine empties into the bladder and is temporarily stored.
  • Bladder, when filled, empties urine out of the body via the urethra.

Therefore, the Correct Answer is D.

More Questions on TEAS 7 Science

  • Q #1: Which of the following is a component of a chromosome?

    A. Centromere

    B. Gamete

    C. Homologue

    D. Ribose

    Answer Explanation

    The protein disc that holds two sister chromatids together is what collectively makes a chromosome. A gene is a segment of DNA, deoxyribonucleic acid, which transmits information from parent to offspring. A single molecule of DNA has thousands of genes. A chromosome is a rod-shaped structure that forms when a single DNA molecule and its associated proteins coil tightly before cell division.

    Chromosomes have two components:

    • Chromatids: two copies of each chromosome
    • Centromeres: protein discs that attach the chromatids together

    Human cells have 23 sets of different chromosomes. The two copies of each chromosome are called homologous chromosomes, or homologues. An offspring receives one homologue from each parent. When a cell contains two homologues of each chromosome, it is termed diploid (2n). A haploid (n) cell contains only one homologue of each chromosome. The only haploid cells humans have are the sperm and eggs cells known as gametes.

  • Q #2: In the following single-replacement reaction, ______ replaces ______. Cl2+2NaI→2NaCl+I2

    A. sodium, iodine

    B. chlorine, iodine

    C. chlorine, sodium

    D. sodium, chlorine

    Answer Explanation

    In this reaction, chlorine (Cl2) is an element in the reaction that replaces iodine in the compound sodium iodide (NaI). This allows chlorine to form a compound with sodium (NaCl) and leaves iodine (I2) as an element. 

    Synthesis reactions involve two or more reactants (A and B) combining to form one product (AB). In the example provided, hydrogen (H2) and oxygen (O2) begin as separate elements. At the end of the reaction, the hydrogen and oxygen atoms are bonded in a molecule of water (H2O).

    Decomposition reactions have only one reactant (AB) that breaks apart into two or more products (A and B). In the example above, hydrogen peroxide (H2O2) breaks apart into two smaller molecules: water (H2O) and oxygen (O2).

    Single-replacement reactions involve two reactants, one compound (AB) and one element (C). In this type of reaction, one element replaces another to form a new compound (AC), leaving one element by itself (B). In the example, zinc replaces hydrogen in hydrochloric acid (HCl). As a result, zinc forms a compound with chlorine, zinc chloride (ZnCl2), and hydrogen (H2) is left by itself.

    Double-replacement reactions involve two reactants, both of which are compounds made of two components (AB and CD). In the example, silver nitrate, composed of silver (Ag1+) and nitrate (NO31-) ions, reacts with sodium chloride, composed of sodium (Na1+) and chloride (Cl1-) ions. The nitrate and chloride ions switch places to produce two compounds that are different from those in the reactants.

    Combustion reactions occur when fuels burn, and they involve specific reactants and products, as seen in the examples below. Some form of fuel that contains carbon and hydrogen is required. Examples of such fuels are methane, propane in a gas grill, butane in a lighter, and octane in gasoline. Notice that these fuels all react with oxygen, which is necessary for anything to burn. In all combustion reactions, carbon dioxide, water, and energy are produced. When something burns, energy is released, which can be felt as heat and seen as light.

  • Q #3: The physical appearance or _____ of an organism is determined by a set of alleles.

    A. genotype

    B. phenotype

    C. transcription

    D. translation

    Answer Explanation

    The phenotype is the physical appearance of an organism, and the genotype is the set of alleles.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed

  • Q #4: Which choice best describes homeostasis?

    A. A functional system of the body

    B. Blood flow to every cell in the body

    C. A relatively constant environment within the body

    D. Neural pathways that have integrated into the body

    Answer Explanation

    Homeostasis is the existence and maintenance of a relatively constant environment within the body. Each cell of the body is surrounded by a small amount of fluid, and the normal functions of each cell depend on the maintenance of its fluid environment within a narrow range of conditions, including temperature, volume, and chemical content. These conditions are known as variables. For example, body temperature is a variable that can increase in a hot environment or decrease in a cold environment.

    There are two types of feedback mechanisms in the human body: negative and positive.

    • Negative Feedback: Most systems of the body are regulated by negative feedback mechanisms, which maintain homeostasis. Negative means that any deviation from the set point is made smaller or is resisted. The maintenance of normal blood pressure is a negative-feedback mechanism. Normal blood pressure is important because it is responsible for moving blood from the heart to tissues.
    • Positive Feedback: Positive-feedback mechanisms are not homeostatic and are rare in healthy individuals. Positive means that when a deviation from a normal value occurs, the response of the system is to make the deviation even greater. Positive feedback therefore usually creates a cycle leading away from homeostasis and, in some cases, results in death. Inadequate delivery of blood to cardiac muscle is an example of positive feedback.

  • Q #5: _____ is dependent not only on the temperature, but also on the amount of substance available.

    A. Condensation

    B. Deposition

    C. Evaporation

    D. Melting

    Answer Explanation

    Unlike condensation, deposition, and melting, evaporation is dependent not only on the temperature, but also on the amount of a substance available.

    Condensation is the change of a gas or vapor to a liquid. A change in the pressure and the temperature of a substance causes this change. The condensation point is the same as the boiling point of a substance. It is most noticeable when there is a large temperature difference between an object and the atmosphere. Condensation is also the opposite of evaporation.

    Evaporation is the change of a liquid to a gas on the surface of a substance. This is not to be confused with boiling, which is a phase transition of an entire substance from a liquid to a gas. The evaporation point is the same as the freezing point of a substance. As the temperature increases, the rate of evaporation also increases. Evaporation depends not only on the temperature, but also on the amount of substance available.

    Freezing is the change of a liquid to a solid. It occurs when the temperature drops below the freezing point. The amount of heat that has been removed from the substance allows the particles of the substance to draw closer together, and the material changes from a liquid to a solid. It is the opposite of melting.

    Melting is the change of a solid into a liquid. For melting to occur, enough heat must be added to the substance. When this is done, the molecules move around more, and the particles are unable to hold together as tightly as they can in a solid. They break apart, and the solid becomes a liquid.

    Sublimation is a solid changing into a gas. As a material sublimates, it does not pass through the liquid state. An example of sublimation is carbon dioxide, a gas, changing into dry ice, a solid. It is the reverse of deposition.

    Deposition is a gas changing into a solid without going through the liquid phase. It is an uncommon phase change. An example is when it is extremely cold outside and the cold air comes in contact with a window. Ice will form on the window without going through the liquid state.

  • Q #6: The diffusion of nutrients through the walls of the digestive system is critical to homeostasis in the body. Where does the majority of this diffusion take place in the digestive system?

    A. Stomach

    B. Esophagus

    C. Oral cavity

    D. Small intestine

    Answer Explanation

    The duodenum is the first part of the small intestines, located between the stomach and the middle part of the small intestines (jejunum). Once food has mixed with acid in the stomach, it moves into the duodenum, where it then mixes with bile from the gallbladder and digestive juices secreted from the pancreas. In the duodenum, absorption of vitamins, minerals, and nutrients begins.

  • Q #7: During the aging process, not all hormone levels decrease; some actually increase. Which of the following is a hormone that may increase as a person ages?

    A. Cortisol

    B. Insulin

    C. Luteinizing

    D. Thyroid

    Answer Explanation

    The aging process affects hormone activity in one of three ways: their secretion can decrease, remain unchanged, or increase.

    Hormones that decrease secretion include the following:

    • Estrogen (in women)
    • Testosterone (in men)
    • Growth hormone
    • Melatonin

    In women, the decline in estrogen levels leads to menopause. In men, testosterone levels usually decrease gradually. Decreased levels of growth hormone may lead to decreased muscle mass and strength. Decreased melatonin levels may play an important role in the loss of normal sleep-wake cycles (circadian rhythms) with aging.

    Hormones that usually remain unchanged or slightly decrease include the following:

    • Cortisol
    • Insulin
    • Thyroid hormones

    Hormones that may increase secretions levels include the following:

    Parathyroid hormone

    • Follicle-stimulating hormone (FSH)
    • Luteinizing hormone (LH)
    • Norepinephrine
    • Epinephrine, in the very old

  • Q #8: While hiking, a person is startled after encountering a bear. Her palms get sweaty and her heart starts racing. Which part of her nervous system was directly stimulated?

    A. Central

    B. Parasympathetic

    C. Somatic

    D. Sympathetic

    Answer Explanation

    The autonomic nervous system is responsible for activities that are nonvoluntary and under unconscious control. This system controls glands and the smooth muscles of internal organs, heart rate, breathing, and digestion. The autonomic nervous system is further divided into the following:

    • Sympathetic nervous system: The sympathetic nervous system focuses on emergency situations by preparing the body for fight or flight. (Sympathetic = Stress)
    • Parasympathetic nervous system: The parasympathetic nervous system controls involuntary processes unrelated to emergencies. This system deals with “rest or digest” activities. (Parasympathetic = Peace)

    The somatic nervous system primarily controls voluntary activities such as walking and riding a bicycle. Thus, this system sends information to the CNS and motor nerve fibers that are attached to skeletal muscle.

  • Q #9: What solution has a pH of 7?

    A. Aniline

    B. Pyridine

    C. Pure water

    D. Sodium hydroxide

    Answer Explanation

    A pH of 7 is a neutral solution, which is how pure water is classified. Researchers can determine the strength of an acid or a base by measuring the pH of a solution. The pH value describes how acidic or basic a solution is. On pH scale, shown below, if the number is less than 7 the solution is acidic. A pH greater than 7 means the solution is basic. When the pH is exactly 7, the solution is neutral.

  • Q #10: A researcher notices a positive correlation between the height of a plant and nutrient concentration over time. Based on this observation, what conclusion does he reach?

    A. The height of a plant increases in the absence and presence of the nutrients

    B. When the amount of nutrients available to the plant decreases, its height increases.

    C. The amount of nutrients available to a plant is independent of how tall the plant gets

    D. When the amount of nutrients available to the plant increases, its height also increases.

    Answer Explanation

    Because this is a positive correlation, if the nutrient concentration increases or decreases, plant height will either increase or decrease accordingly.

    While analyzing data, scientists tend to observe cause-and-effect relationships. These relationships can be quantified using correlations. Correlations measure the amount of linear association between two variables. There are three types of correlations:

    Positive correlation: 
    As one variable increases, the other variable also increases. This is also known as a direct correlation.

    Negative correlation: 
    As one variable increases, the other decreases. The opposite is true if one variable decreases. A negative correlation is also known as an inverse correlation or an indirect correlation.

    No correlation: 
    There is no connection or relationship between two variables.