/

What raw inorganic material would an autotroph most likely use to create chemical energy for growth?

A. carbon dioxide

B. minerals in soil

C. decaying matter

D. sugar molecules

Answer Explanation:

Autotrophs are organisms that use basic raw materials in nature, like the sun, to make energy-rich biomolecules. Minerals are naturally inorganic.

Autotrophs are organisms that make energy-rich biomolecules from raw material in nature. They do this by using basic energy sources such the sun. This explains why most autotrophs rely on photosynthesis to transform sunlight into usable food that can produce energy necessary for life. Plants and certain species of bacteria are autotrophs.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: Which of the following are included in the male reproductive system?

    A. the penis and epididymis

    B. the vas deferens and uterus

    C. the penis and Fallopian tubes

    D. the penis, scrotum, and cervix

    Answer Explanation

    The main male reproductive organs are the penis and the testicles, which are located external to the body. The penis is composed of a long shaft and a bulbous end called the glans penis. The glans penis is usually surrounded by an extension of skin called the foreskin.

    The testes (analogous to the female ovaries), or testicles, are retained in a pouch of skin called the scrotum, which descends from the base of the penis. The scrotum contains nerves and blood vessels needed to support the testicles’ functions. Each testicle (or testis) produces sperm (analogous to the female ova), which are passed into a series of coiled tubules called the epididymis. The epididymis stores and nurtures sperm until they are passed into the vas deferens, a tubule that is about 30 centimeters long, extending from the testicle into the pelvis and ending at the ejaculatory duct.

    The epididymis and vas deferens are supported by several accessory glands (the seminal vesicles, the prostate gland, and the Cowper glands) that produce fluid components of semen and support the sperm cells.

  • Q #2: What standard is used to make comparisons in experiments?

    A. Sample size

    B. Control group

    C. Dependent variable

    D. Independent variable

    Answer Explanation

    A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

    Recall that these make up the scientific method, described below:

    • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
    • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
    • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
    • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
      • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
    • Observe: Analyze data collected during an experiment to observe patterns. 
      • Example: Analyze the differences between the numbers of particles collected in terms of size.
    • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
    • Communicate: Report findings so others can replicate and verify the results.

  • Q #3: An intracellular chemical signal can be produced in the cell membrane. Once it is produced, where does it go?

    A. To a different cell

    B. To another part of the same cell

    C. To a region right outside the cell

    D. To an area with a high ion concentration

    Answer Explanation

    There are two major types of receptor molecules that respond to an intercellular chemical signal:

    • Intracellular receptors: These receptors are located in either the cytoplasm or the nucleus of the cell. Signals diffuse across the cell membrane and bind to the receptor sites on intracellular receptors, of the same cell.
    • Membrane-bound receptors: These receptors extend across the cell membrane, with their receptor sites on the outer surface of the cell membrane. They respond to intercellular chemical signals that are large, water-soluble molecules that do not diffuse across the cell membrane.

  • Q #4: The physical appearance or _____ of an organism is determined by a set of alleles.

    A. genotype

    B. phenotype

    C. transcription

    D. translation

    Answer Explanation

    The phenotype is the physical appearance of an organism, and the genotype is the set of alleles.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed

  • Q #5: What structure plays a role in air conduction?

    A. Alveolus

    B. Capillary

    C. Lung

    D. Trachea

    Answer Explanation

    The primary function of the respiratory system is to provide oxygen to and remove carbon dioxide from the body. In addition to gas exchange, the respiratory system enables a person to breathe. Breathing, or inhalation, is essential to life. It is the mechanism that provides oxygen to the body. Without oxygen, cells are unable to perform their functions necessary to keep the body alive. The primary muscle of inspiration is the diaphragm. Known as the chest cavity, this dome shaped structure flattens when it contracts. The rib cage moves outward, allowing outside air to be drawn into the lungs. During relaxation, the diaphragm returns to its dome shape and the rib cage moves back to its natural position. This causes the chest cavity to push air out of the lungs.

    The respiratory system can be functionally divided into two parts:

    • Air-conducting portion: Air is delivered to the lungs. This region consists of the upper and lower respiratory tract—specifically, the larynx, trachea, bronchi, and bronchioles.
    • Gas exchange portion: Gas exchange takes place between the air and the blood. This portion includes the lungs, alveoli, and capillaries.

  • Q #6: Which sequence describes the hierarchy level of biological organization?

    A. Kingdom, phylum, class, order, family, genus, and species

    B. Genus, class, kingdom, species, order, phylum, and family

    C. Genus, class, kingdom, species, order, phylum, and family

    D. Species, kingdom, genus, class, family, phylum, and order

    Answer Explanation

    Taxonomy is the process of classifying, describing, and naming organisms. There are seven levels in the Linnaean taxonomic system, starting with the broadest level, kingdom, and ending with the species level. For example, in the image the genus level contains two types of bears, but the species level shows one type. Additionally, organisms in each level are found in the level above it. For example, organisms in the order level are part of the class level. This classification system is based on physical similarities across living things. It does not account for molecular or genetic similarities.

  • Q #7: Which statement best represents Mendel’s experiments with garden peas?

    A. As a result, Mendel developed several theories that have since been disproved.

    B. Mendel realized he was on an incorrect track, which led him to other experimental media

    C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

    D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

    Answer Explanation

    Mendel developed theories of genetics that scientists around the world use today.

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.

  • Q #8: A spoonful of sugar is added to a hot cup of tea. All the sugar dissolves. How can the resulting solution be described?

    A. Saturated and homogeneous

    B. Saturated and heterogeneous

    C. Unsaturated and homogeneous

    D. Unsaturated and heterogeneous

    Answer Explanation

    Because more solute could be added and dissolve, the solution has not yet reached its limit and is considered unsaturated. Because all the solute dissolves, the particles in the mixture are evenly distributed as a homogenous mixture. 

    • mixture is when elements and compounds are physically, but not chemically, combined.
    • homogeneous mixture is when substances mix evenly and it is impossible to see individual components. A heterogeneous mixture is when the substances mix unevenly and it is possible to see individual components.
    • solution is a type of homogeneous mixture that is formed when a solute dissolves in a solvent.
    • The concentration of a solution is the amount of a substance in a given amount of solution. An unsaturated solution has the ability to dissolve more solute and a saturated solution has already reached the limit of solute it can dissolve.

  • Q #9: What phase is the cell cycle part of?

    A. Interphase

    B. Metaphase

    C. Prophase

    D. Telophase

    Answer Explanation

    Before mitosis or meiosis occurs, interphase must happen. This is when the cell cycle takes place. The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase. 

  • Q #10: The sequence of amino acids in a gene determines

    A. the primary structure of a codon

    B. the primary structure of a protein

    C. the primary structure of a nucleotide

    D. the primary structure of a nucleic acid.

    Answer Explanation

    The sequence of amino acids in a gene determines the primary structure of a protein. The components necessary for translation are located in the cytoplasm. Translation is the making of proteins by mRNA binding to a ribosome with the start codon that initiates the production of amino acids. A peptide bond forms and connects the amino acids together. The sequence of amino acids determines the protein’s structure, which determines its function.