/

Which part of the digestive system comes before the stomach?

A. mouth

B. esophagus

C. ileum

D. colon

Answer Explanation:

Oral Cavity is the first part of the digestive system. It is bounded by the lips and cheeks and contains the teeth and tongue. Its primary function is to masticate, or chew, and moisten the food.

Pharynx, or throat, connects the mouth to the esophagus.

Esophagus is a muscular tube about 25 centimeters long. Food travels down it to the cardiac sphincter of the stomach.

Pyloric sphincter. The exit of the stomach.

Small intestine is about 6 meters long and consists of three parts: duodenum, jejunum, and ileum.

Large intestine, consists of the cecum, colon, rectum, and anal canal. The cecum is located where the small and large intestine meet. The primary function of the large intestine is to compress the waste and collect any excess water that can be recycled.

Colon is about 1.5 to 1.8 meters long and consists of four parts: the ascending, transverse, descending, and sigmoid colon.

 

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: Fertilization (the fusing of one sperm and an ovum) results in a(n) _____.

    A. embryo

    B. fetus

    C. infant

    D. zygote

    Answer Explanation

    Human intercourse consists of the male introducing sperm into the female’s reproductive system. Sperm may then pass through the female’s reproductive system to the Fallopian tubes where one sperm fertilizes an ovum, creating a zygote. The zygote passes out of the Fallopian tube and implants into the uterine wall to begin gestation. Over nine months, the zygote develops and grows into an embryo and then a fetus. An infant is the baby that is born.

  • Q #2: Which of the following atoms is a cation?

    A. 14 protons, 14 neutrons, 18 electrons

    B. 34 protons, 45 neutrons, 36 electrons

    C. 35 protons, 44 neutrons, 35 electrons

    D. 82 protons, 125 neutrons, 78 electrons

    Answer Explanation

    Because it has more protons than electrons, this atom has a positive charge and can be classified as a cation. When a metal such as sodium reacts to become stable, it loses its valence electrons. At first, it is a neutral atom with 11 protons and 11 electrons. When it loses an electron, the number of protons does not change, and the atom has 11 protons and 10 electrons. Because there is one more positively charged proton, a cation forms. A cation is an ion with a net positive charge.

  • Q #3: When would a cell most likely contain the most nucleotides?

    A. S

    B. G1

    C. M

    D. G2

    Answer Explanation

    A cell copies its DNA during the S phase, and nucleotides are the building blocks of DNA. Thus, the step preceding the S phase, the G1 phase, is the phase of the cell cycle when the cell would contain the most nucleotides.

    For a cell to divide into more cells, it must grow, copy its DNA, and produce new daughter cells. The cell cycle regulates cellular division. This process can either prevent a cell from dividing or trigger it to start dividing.

    The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

    • G1: The first gap phase, during which the cell prepares to copy its DNA
    • S: The synthesis phase, during which DNA is copied
    • G2 : The second gap phase, during which the cell prepares for cell division

    It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.

  • Q #4: During the aging process, not all hormone levels decrease; some actually increase. Which of the following is a hormone that may increase as a person ages?

    A. Cortisol

    B. Insulin

    C. Luteinizing

    D. Thyroid

    Answer Explanation

    The aging process affects hormone activity in one of three ways: their secretion can decrease, remain unchanged, or increase.

    Hormones that decrease secretion include the following:

    • Estrogen (in women)
    • Testosterone (in men)
    • Growth hormone
    • Melatonin

    In women, the decline in estrogen levels leads to menopause. In men, testosterone levels usually decrease gradually. Decreased levels of growth hormone may lead to decreased muscle mass and strength. Decreased melatonin levels may play an important role in the loss of normal sleep-wake cycles (circadian rhythms) with aging.

    Hormones that usually remain unchanged or slightly decrease include the following:

    • Cortisol
    • Insulin
    • Thyroid hormones

    Hormones that may increase secretions levels include the following:

    Parathyroid hormone

    • Follicle-stimulating hormone (FSH)
    • Luteinizing hormone (LH)
    • Norepinephrine
    • Epinephrine, in the very old

  • Q #5: A student notices a pattern of stripes on five tigers. Each of the five tigers has the same stripe pattern. Using his inductive reasoning, what does he logically assume based on this information?

    A. The pattern continues to change over time.

    B. Natural adaptations cause this pattern to occur

    C. Each offspring will have the same stripe pattern

    D. Ancestors of the tigers have different stripe patterns

    Answer Explanation

    Inductive reasoning involves making specific observations and using them to make broad statements. The student observes that all of the tigers have the same stripe pattern. He can use this observation to make the broad statement that all the tigers’ offspring will have the same stripe pattern.

    Inductive reasoning involves drawing a general conclusion from specific observations. This form of reasoning is referred to as the “from the bottom up” approach. Information gathered from specific observations can be used to make a general conclusion about the topic under investigation. In other words, conclusions are based on observed patterns in data.

  • Q #6: What type of reaction is described by the following equation? ZnBr2(aq) + 2KOH(aq) → Zn(OH)2(s) + 2KBr(aq)

    A. Synthesis

    B. Decomposition

    C. Single-Replacement

    D. Double-Replacement

    Answer Explanation

    In this reaction, two elements are trading places hence double-replacement. In the reactants, zinc and bromide ions are together, and potassium and hydroxide ions are together. In the products, zinc and hydroxide ions are together, and potassium and bromide ions are together.

  • Q #7: Which statement best represents Mendel’s experiments with garden peas?

    A. As a result, Mendel developed several theories that have since been disproved.

    B. Mendel realized he was on an incorrect track, which led him to other experimental media

    C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

    D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

    Answer Explanation

    Mendel developed theories of genetics that scientists around the world use today.

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.

  • Q #8: Which of the following is supported by the cell theory?

    A. Cells are alive and recognized as the building blocks for life.

    B. Scientists can identify and differentiate cells by using a microscope

    C. Cells are produced from existing cells using meiosis instead of mitosis.

    D. Living things are composed of a single cell that remains undifferentiated

    Answer Explanation

    After scientists were able to view cells under the microscope they formulated the cell theory. One part of this theory concluded that all cells are alive. They also represent the basic unit of life.

    All living things are made of cells. Cells are the smallest structural units and basic building blocks of living things. Cells contain everything necessary to keep living things alive. Varying in size and shape, cells carry out specialized functions. This theory, or in-depth explanation, about cells consists of three parts:

    • All living things are composed of one or more cells.
    • Cells are alive and represent the basic unit of life.
    • All cells are produced from pre-existing cells.

     

  • Q #9: Why did it take many years for the cell theory to be developed?

    A. Advancements in microscopy took place slowly.

    B. Cells were difficult to isolate for experimental analysis

    C. Researchers believed a cell formed from preexisting cells

    D. Scientists already proved that cells were essential for life.

    Answer Explanation

    Robert Hooke discovered the first cells in the mid-eighteenth century. The cell theory is a theory because it is supported by a significant number of experimental findings. The cell theory took many years to be developed because microscopes were not powerful enough to make such observations.

    This theory, or in-depth explanation, about cells consists of three parts:

    • All living things are composed of one or more cells.
    • Cells are alive and represent the basic unit of life.
    • All cells are produced from pre-existing cells.

     

  • Q #10: Which blood group is a universal donor?

    A. A

    B. B

    C. AB

    D. O

    Answer Explanation

    A person can be a universal blood donor or acceptor. A universal blood donor has type O blood, while a universal blood acceptor has type AB blood.

    There are several different types or groups of blood, and the major groups are A, B, AB, and O. Blood group is a way to classify blood according to inherited differences of red blood cell antigens found on the surface of a red blood cell. The type of antibody in blood also identifies a particular blood group. Antibodies are proteins found in the plasma. They function as part of the body’s natural defense to recognize foreign substances and alert the immune system.

    Depending on which antigen is inherited, parental offspring will have one of the four major blood groups. Collectively, the following major blood groups comprise the ABO system:

    • Blood group A: Displays type A antigens on the surface of a red blood cell and contains B antibodies in the plasma.
    • Blood group B: Displays type B antigens on the red blood cell’s surface and contains A antibodies in the plasma.
    • Blood group O: Does not display A or B antigens on the surface of a red blood cell. Both A and B antibodies are in the plasma.
    • Blood group AB: Displays type A and B antigens on the red blood cell’s surface, but neither A nor B antibodies are in the plasma

    In addition to antigens, the Rh factor protein may exist on a red blood cell’s surface. Because this protein can be either present (+) or absent (-), it increases the number of major blood groups from four to eight: A+, A-, B+, B-, O+, O-, AB+, and AB-.