/

In which state of matter do the particles of iron have the lowest amount of cohesion?

A. Solid iron particles have the lowest amount of cohesion

B. Liquid iron particles have the lowest amount of cohesion

C. Gaseous iron particles have the lowest amount of cohesion

D. The particles have the same amount of cohesion in all states of matter.

Answer Explanation:

The particles in a sample of gas are farther apart than in solids or liquids and therefore have the lowest amount of cohesion.

  • Cohesion is the tendency of particles of the same kind to stick to each other.
  • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science

  • Q #1: While hiking, a person is startled after encountering a bear. Her palms get sweaty and her heart starts racing. Which part of her nervous system was directly stimulated?

    A. Central

    B. Parasympathetic

    C. Somatic

    D. Sympathetic

    Answer Explanation

    The autonomic nervous system is responsible for activities that are nonvoluntary and under unconscious control. This system controls glands and the smooth muscles of internal organs, heart rate, breathing, and digestion. The autonomic nervous system is further divided into the following:

    • Sympathetic nervous system: The sympathetic nervous system focuses on emergency situations by preparing the body for fight or flight. (Sympathetic = Stress)
    • Parasympathetic nervous system: The parasympathetic nervous system controls involuntary processes unrelated to emergencies. This system deals with “rest or digest” activities. (Parasympathetic = Peace)

    The somatic nervous system primarily controls voluntary activities such as walking and riding a bicycle. Thus, this system sends information to the CNS and motor nerve fibers that are attached to skeletal muscle.

  • Q #2: Mendel discovered the pattern associated with _____after developing a series of rules in genetics.

    A. epigenetics

    B. heredity

    C. heterogeneity

    D. taxonomy

    Answer Explanation

    Mendel was accurately able to predict the patterns of heredity by studying rules related to genetics. These rules helped shape his theory of heredity. Heredity is the characteristics offspring inherit from their parents. 

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.

  • Q #3: Which is classified as a type of acid-base reaction that produces a salt?

    A. Combination

    B. Decomposition

    C. Hydrolysis

    D. Neutralization

    Answer Explanation

    A neutralization reaction is a type of acid-base reaction where an acid and base react to form a salt and water. 

    In an aqueous solution, a base increases the hydroxide concentration (OH–), while an acid increases the hydrogen ion (H+) concentration. Sometimes, neutralization reactions also occur. This type of reaction happens when an acid and a base react with each other to form water and salt. Salt is typically defined as an ionic compound that includes any cation except H+ and any anion except OH–. Consider the following example of a neutralization reaction between hydrobromic acid (HBr) and potassium hydroxide (KOH).

    HBr+KOH→KBr+H2O

    Not all neutralization reactions proceed in the manner where all reactants are in the aqueous phase. In some chemical reactions, one reactant may be a solid. The neutralization reaction can still proceed to completion.