/

What raw inorganic material would an autotroph most likely use to create chemical energy for growth?

A. carbon dioxide

B. minerals in soil

C. decaying matter

D. sugar molecules

Answer Explanation:

Autotrophs are organisms that use basic raw materials in nature, like the sun, to make energy-rich biomolecules. Minerals are naturally inorganic.

Autotrophs are organisms that make energy-rich biomolecules from raw material in nature. They do this by using basic energy sources such the sun. This explains why most autotrophs rely on photosynthesis to transform sunlight into usable food that can produce energy necessary for life. Plants and certain species of bacteria are autotrophs.

Therefore, the Correct Answer is B.

More Questions on TEAS 7 Science

  • Q #1: In which state of matter do the particles of iron have the lowest amount of cohesion?

    A. Solid iron particles have the lowest amount of cohesion

    B. Liquid iron particles have the lowest amount of cohesion

    C. Gaseous iron particles have the lowest amount of cohesion

    D. The particles have the same amount of cohesion in all states of matter.

    Answer Explanation

    The particles in a sample of gas are farther apart than in solids or liquids and therefore have the lowest amount of cohesion.

    • Cohesion is the tendency of particles of the same kind to stick to each other.
    • A solid has the lowest amount of energy because its particles are packed close together. Liquids have more energy than a solid, and gases have more energy than solids or liquids because the cohesive forces are very weak.

  • Q #2: _____ is dependent not only on the temperature, but also on the amount of substance available.

    A. Condensation

    B. Deposition

    C. Evaporation

    D. Melting

    Answer Explanation

    Unlike condensation, deposition, and melting, evaporation is dependent not only on the temperature, but also on the amount of a substance available.

    Condensation is the change of a gas or vapor to a liquid. A change in the pressure and the temperature of a substance causes this change. The condensation point is the same as the boiling point of a substance. It is most noticeable when there is a large temperature difference between an object and the atmosphere. Condensation is also the opposite of evaporation.

    Evaporation is the change of a liquid to a gas on the surface of a substance. This is not to be confused with boiling, which is a phase transition of an entire substance from a liquid to a gas. The evaporation point is the same as the freezing point of a substance. As the temperature increases, the rate of evaporation also increases. Evaporation depends not only on the temperature, but also on the amount of substance available.

    Freezing is the change of a liquid to a solid. It occurs when the temperature drops below the freezing point. The amount of heat that has been removed from the substance allows the particles of the substance to draw closer together, and the material changes from a liquid to a solid. It is the opposite of melting.

    Melting is the change of a solid into a liquid. For melting to occur, enough heat must be added to the substance. When this is done, the molecules move around more, and the particles are unable to hold together as tightly as they can in a solid. They break apart, and the solid becomes a liquid.

    Sublimation is a solid changing into a gas. As a material sublimates, it does not pass through the liquid state. An example of sublimation is carbon dioxide, a gas, changing into dry ice, a solid. It is the reverse of deposition.

    Deposition is a gas changing into a solid without going through the liquid phase. It is an uncommon phase change. An example is when it is extremely cold outside and the cold air comes in contact with a window. Ice will form on the window without going through the liquid state.

  • Q #3: The physical appearance or _____ of an organism is determined by a set of alleles.

    A. genotype

    B. phenotype

    C. transcription

    D. translation

    Answer Explanation

    The phenotype is the physical appearance of an organism, and the genotype is the set of alleles.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed