/

When copper sulfate is made by reacting copper oxide with sulfuric acid, the acid is heated. Why?

A. To increase the rate of reaction

B. To decrease the rate of reaction

C. To prevent the formation of byproducts

D. To decrease the energy of activation

Answer Explanation:

A) To increase the rate of reaction (Correct Answer): Heating the sulfuric acid increases the kinetic energy of the particles, leading to more frequent and energetic collisions between the reactant particles. This, in turn, increases the rate of reaction between copper oxide and sulfuric acid, facilitating the production of copper sulfate.

B) To decrease the rate of reaction: Heating typically increases the rate of reaction by providing more energy for particles to overcome the activation energy barrier. Decreasing the temperature would slow down the reaction, which is not the intended outcome in this scenario.

C) To prevent the formation of byproducts: While heating may influence the selectivity of reactions and the formation of byproducts in some cases, the primary purpose of heating sulfuric acid in this context is to increase the rate of reaction rather than to prevent the formation of byproducts.

D) To decrease the energy of activation: Heating increases the energy of particles, helping them overcome the energy barrier required for the reaction to occur. Therefore, heating sulfuric acid would increase the energy of activation rather than decrease it.

Therefore, the Correct Answer is A.

More Questions on TEAS 7 Science

  • Q #1: :pH is a measure of how acidic or basic a substance is. The pH scale ranges from:

    A. 0–7

    B. 7–14

    C. 0–14

    D. 1–10

    Answer Explanation

    A. 0–7: This range corresponds to acidic solutions on the pH scale. A pH value below 7 indicates acidity.

    B. 7–14: This range corresponds to basic solutions on the pH scale. A pH value above 7 indicates alkalinity.

    C. 0–14 (Correct Answer): The pH scale ranges from 0 to 14, covering the entire spectrum of acidity and alkalinity. A pH value of 7 is considered neutral, while values below 7 indicate acidity and values above 7 indicate alkalinity.

    D. 1–10: This range does not encompass the full range of the pH scale. The pH scale extends beyond 10 for alkaline solutions and below 1 for highly acidic solutions. Therefore, this choice is incorrect.

  • Q #2: What is the Brønsted-Lowry definition of an acid and base?

    A. Acids are electron donors and bases are electron acceptors.

    B. Acids are proton donors and bases are proton acceptors.

    C. Acids are proton acceptors and bases are proton donors.

    D. Acids are compounds that increase the concentration of hydroxide ions in solution and bases are compounds that increase the concentration of hydrogen ions in solution.

    Answer Explanation

    A) Acids are electron donors and bases are electron acceptors: This statement describes the Lewis definition of acids and bases, which focuses on the transfer of electron pairs, rather than the Brønsted-Lowry definition, which involves the transfer of protons.

    B) Acids are proton donors and bases are proton acceptors. (Correct Answer): According to the Brønsted-Lowry definition, an acid is a substance that donates a proton (H+ ion), while a base is a substance that accepts a proton.

    C) Acids are proton acceptors and bases are proton donors: This statement incorrectly describes the roles of acids and bases according to the Brønsted-Lowry definition. Acids donate protons, while bases accept protons.

    D) Acids are compounds that increase the concentration of hydroxide ions in solution and bases are compounds that increase the concentration of hydrogen ions in solution: This statement does not accurately represent the Brønsted-Lowry definition. Acids and bases are defined based on their behavior regarding proton transfer, not changes in ion concentration.

  • Q #3: How can solid lead iodide be separated from solution?

    A. Filtration

    B. Distillation

    C. Decantation

    D. Chromatography

    Answer Explanation

    A) Filtration: Solid lead iodide can be separated from the solution using filtration. Filtration involves passing the mixture through a filter paper or porous material, allowing the solid particles to be retained while the liquid passes through.

    B) Distillation: Distillation is a process used to separate components of a mixture based on differences in their boiling points. It is not typically used to separate solid lead iodide from a solution.

    C) Decantation: Decantation involves carefully pouring off the liquid portion of a mixture, leaving the solid behind. While it can be used to separate solid and liquid phases, it may not be as effective as filtration for separating fine solid particles like lead iodide.

    D) Chromatography: Chromatography is a technique used to separate and analyze mixtures based on differences in the components' distribution between two phases: a stationary phase and a mobile phase. It is not typically used for separating solid lead iodide from a solution.