/

Which example is part of the scientific method?

A. A student reads about a new way to harness energy from the sun.

B. A researcher studies the effects of car exhaust on how people breathe.

C. A researcher analyzes how many plants respond well to a new fertilizer

D. A student discovers how insulin plays a role in the development of diabetes

Answer Explanation:

One step of the scientific method is to analyze information or data collected from the experiment to conclude whether the hypothesis is supported.

Recall that these make up the scientific method, described below:

  • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
  • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
  • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
  • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
    • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
  • Observe: Analyze data collected during an experiment to observe patterns. 
    • Example: Analyze the differences between the numbers of particles collected in terms of size.
  • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
  • Communicate: Report findings so others can replicate and verify the results.

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science

  • Q #1: What standard is used to make comparisons in experiments?

    A. Sample size

    B. Control group

    C. Dependent variable

    D. Independent variable

    Answer Explanation

    A control group is a factor that does not change during an experiment. Due to this, it is used as a standard for comparison with variables that do change such as a dependent variable.

    Recall that these make up the scientific method, described below:

    • Problem: The question created because of an observation. Example: Does the size of a plastic object affect how fast it naturally degrades in a lake?
    • Research: Reliable information available about what is observed. Example: Learn how plastics are made and understand the properties of a lake.
    • Hypothesis: A predicted solution to the question or problem. Example: If the plastic material is small, then it will degrade faster than a large particle.
    • Experiment: A series of tests used to evaluate the hypothesis. Experiments consist of an independent variable that the researcher modifies and a dependent variable that changes due to the independent variable. They also include a control group used as a standard to make comparisons. 
      • Example: Collect plastic particles both onshore and offshore of the lake over time. Determine the size of the particles and describe the lake conditions during this time period.
    • Observe: Analyze data collected during an experiment to observe patterns. 
      • Example: Analyze the differences between the numbers of particles collected in terms of size.
    • Conclusion: State whether the hypothesis is rejected or accepted and summarize all results.
    • Communicate: Report findings so others can replicate and verify the results.

  • Q #2: Where is skeletal muscle found?

    A. Inside the heart

    B. Attached to bone

    C. Lining the walls of the bladder

    D. Within the gastrointestinal tract

    Answer Explanation

    Skeletal muscle: This muscle cell is striated, long, and cylindrical. There are many nuclei in a skeletal muscle cell. Attached to bones in the body, skeletal muscle contracts voluntarily, meaning that it is under conscious control.

    Smooth muscle: This muscle consists of nonstriated muscle cells that are spindle-shaped. Like cardiac muscle cells, smooth muscle cells contain one nucleus. This muscle type is found in the walls of internal organs like the bladder and stomach. Smooth muscle contraction is involuntary and controlled by the autonomic nervous system.

    Cardiac muscle: This muscle consists of muscle cells that are striated, short, and branched. These cells contain one nucleus, are branched, and are rectangular. Cardiac muscle contraction is an involuntary process, which is why it is under the control of the autonomic nervous system. This muscle is found in the walls of the heart.

  • Q #3: Which statement best represents Mendel’s experiments with garden peas?

    A. As a result, Mendel developed several theories that have since been disproved.

    B. Mendel realized he was on an incorrect track, which led him to other experimental media

    C. As a result, Mendel developed foundational conclusions that are still valued and followed today.

    D. Mendel collaborated with others interested in genetics to develop heredity guidelines we still use today

    Answer Explanation

    Mendel developed theories of genetics that scientists around the world use today.

    From experiments with garden peas, Mendel developed a simple set of rules that accurately predicted patterns of heredity. He discovered that plants either self-pollinate or cross-pollinate, when the pollen from one plant fertilizes the pistil of another plant. He also discovered that traits are either dominant or recessive. Dominant traits are expressed, and recessive traits are hidden.

    Mendel’s Theory of Heredity

    To explain his results, Mendel proposed a theory that has become the foundation of the science of genetics. The theory has five elements:

    • Parents do not transmit traits directly to their offspring. Rather, they pass on units of information called genes.
    • For each trait, an individual has two factors: one from each parent. If the two factors have the same information, the individual is homozygous for that trait. If the two factors are different, the individual is heterozygous for that trait. Each copy of a factor, or gene, is called an allele.
    • The alleles determine the physical appearance, or phenotype. The set of alleles an individual has is its genotype.
    • An individual receives one allele from each parent.
    • The presence of an allele does not guarantee that the trait will be expressed.