/

Which of the following is a type of genetic mutation that involves the insertion or deletion of one or more nucleotides in a DNA sequence?

A. Silent mutation

B. Nonsense mutation

C. Frameshift mutation

D. Missense mutation

Answer Explanation:

A frameshift mutation is a type of genetic mutation that involves the insertion or deletion of one or more nucleotides in a DNA sequence. This can cause a shift in the reading frame of the genetic code, resulting in a change in the amino acid sequence of the resulting protein. Frameshift mutations can have significant effects on the function of the protein and can lead to genetic disorders or diseases.

 
 

 

 

Therefore, the Correct Answer is C.

More Questions on TEAS 7 Science

  • Q #1: Which of the following statements is true regarding vaccines?

    A. Vaccines can cause the disease they are designed to protect against

    B. Vaccines work by providing passive immunity to the individual

    C. Vaccines work by exposing the individual to a weakened or inactivated form of the pathogen

    D. Vaccines only provide protection against bacterial infections

    Answer Explanation

    Vaccines are a type of preventative medicine that work by exposing the individual to a weakened or inactivated form of a pathogen (such as a virus or bacteria) or to a piece of the pathogen (such as a protein or sugar) that triggers an immune response in the body. This exposure allows the body to develop immunity to the pathogen without getting sick from the full-blown disease. Once the immune system has been primed, it can recognize and quickly respond to the pathogen if it is encountered again in the future, providing protection against the disease.

    It is a common misconception that vaccines can cause the disease they are designed to protect against. This is not true. While some vaccines may cause mild symptoms such as a low-grade fever or soreness at the injection site, they do not cause the full-blown disease.

    Vaccines provide active immunity, meaning that the body produces its own antibodies against the pathogen, rather than receiving pre-made antibodies as in passive immunity. Additionally, vaccines can be effective against both bacterial and viral infections, depending on the specific vaccine.

    Everything You Need to Know About Vaccinations

     

  • Q #2: What is the difference between innate immunity and adaptive immunity?

    A. Innate immunity is present at birth and provides immediate, non-specific protection against pathogens while adaptive immunity is developed over time and provides specific protection against particular pathogens.

    B. Innate immunity involves the recognition of specific pathogens while adaptive immunity involves the recognition of general paterns of pathogens.

    C. Innate immunity involves the production of antibodies while adaptive immunity involves the activation of phagocytes.

    D. Innate immunity is activated by the lymphatic system while adaptive immunity is activated by the circulatory system.

    Answer Explanation

    Innate immunity is the first line of defense against pathogens and is present at birth. It provides immediate, non-specific protection against a wide range of pathogens, including bacteria, viruses, and fungi. Innate immunity involves physical barriers, such as skin and mucous membranes, as well as cellular and molecular components, such as phagocytes and cytokines.

    Adaptive immunity, on the other hand, is developed over time and provides specific protection against particular pathogens. It involves the recognition of antigens, which are specific components of pathogens, by immune cells called lymphocytes. The lymphocytes then produce antibodies that are specific to the antigens, allowing for a targeted response to the pathogen. This process takes time to develop, as the immune system needs to encounter the pathogen and mount a response.

    Overall, innate immunity provides immediate, non-specific protection while adaptive immunity provides specific protection that is tailored to the particular pathogen. Both forms of immunity work together to protect the body against pathogens.

  • Q #3: What is the function of ribosomes in a cell?

    A. To produce energy for the cell

    B. To store genetic information

    C. To transport molecules within the cell

    D. To synthesize proteins in the cell

    Answer Explanation

    Ribosomes are small, spherical structures found in all living cells, including bacteria, archaea, and eukaryotes. Their primary function is to synthesize proteins using the genetic information stored in the cell's DNA. Ribosomes are composed of two subunits, one large and one small, that come together during protein synthesis.

    Ribosomes read the genetic information stored in mRNA (messenger RNA) and use this information to assemble amino acids in the correct order to form a protein. The ribosome moves along the mRNA, adding one amino acid at a time to the growing protein chain until it reaches the end of the mRNA and the protein is complete.

    Proteins are essential for a wide variety of cellular functions, including catalyzing chemical reactions, providing structural support, and transporting molecules across cell membranes. Therefore, ribosomes play a critical role in the overall function and survival of a cell.

    Ribosome - Definition, Function and Structure | Biology Dictionary