/

Which of the following is the total number of whole boxes that measure 3 ft * 3 ft * 3 ft that can be stored in a room that measures 15 ft * 15 ft * 15 ft, if the size of the boxes cannot be altered?

A. 125

B. 64

C. 92

D. 18

Answer Explanation:

The number of boxes is found by volume of the room divided by volume of one box.

Number of boxes

The room can hold 125 boxes.

Therefore, the Correct Answer is A.

More Questions on TEAS 7 Math

  • Q #1: A child has a bottle full of pennies, nickels, dimes, and quarters. There are six as many quarters as pennies, two times as many as nickels as pennies, and 5 times as many dimes as nickels. How many more dimes does the child have than nickels?

    A. 4 times as many

    B. 5 times as many

    C. 20 times as many

    D. 10 times as many

    Answer Explanation

     In this problem, we need to compare the number of dimes to quarters.

    If we let p be number of pennies in the bottle. Then,

    Number of quarters in the bottle = 6p

    Number of nickels in the bottle = 2p

    Number of dimes in the bottle =5(2p)=10p

    Now relating dimes to nickels, we have

    Thus, there are 5 times as many dimes as quarters in the box.

  • Q #2: Which of the following is the best estimate of the number of centimeters (cm) in 2 yards? (Note: 1 yard=3 feet; 1 foot =12 inches; 1 inch =2.54 cm)

    A. 175 cm

    B. 180 cm

    C. 136 cm

    D. 90 cm

    Answer Explanation

    we convert the given value in yards to the cm by setting up the equation below.

    2 yards is equal to 182.88 cm, which is approximately 180 cm.

  • Q #3: Which of the following is the length of the unknown leg of a right triangle that has one leg length of 13 feet and a hypotenuse of 22 feet? (Round to the nearest tenth.)

    A. 20 feet

    B. 14.4 feet

    C. 8.9 feet

    D. 17.7 feet

    Answer Explanation

     Let the unknown length of the x. The resulting rectangle is shown below.

    Then, we apply the Pythagoras theorem to find the value of x as:

    The value of the unknown length is approximately 17.7 feet.