/

Which sequence describes the hierarchy level of biological organization?

A. Kingdom, phylum, class, order, family, genus, and species

B. Genus, class, kingdom, species, order, phylum, and family

C. Genus, class, kingdom, species, order, phylum, and family

D. Species, kingdom, genus, class, family, phylum, and order

Answer Explanation:

Taxonomy is the process of classifying, describing, and naming organisms. There are seven levels in the Linnaean taxonomic system, starting with the broadest level, kingdom, and ending with the species level. For example, in the image the genus level contains two types of bears, but the species level shows one type. Additionally, organisms in each level are found in the level above it. For example, organisms in the order level are part of the class level. This classification system is based on physical similarities across living things. It does not account for molecular or genetic similarities.

Therefore, the Correct Answer is A.

More Questions on TEAS 7 Science

  • Q #1: What raw inorganic material would an autotroph most likely use to create chemical energy for growth?

    A. carbon dioxide

    B. minerals in soil

    C. decaying matter

    D. sugar molecules

    Answer Explanation

    Autotrophs are organisms that use basic raw materials in nature, like the sun, to make energy-rich biomolecules. Minerals are naturally inorganic.

    Autotrophs are organisms that make energy-rich biomolecules from raw material in nature. They do this by using basic energy sources such the sun. This explains why most autotrophs rely on photosynthesis to transform sunlight into usable food that can produce energy necessary for life. Plants and certain species of bacteria are autotrophs.

  • Q #2: During which of the following phase changes will the cohesion between the particles in a substance decrease?

    A. Condensation

    B. Deposition

    C. Freezing

    D. Vaporization

    Answer Explanation

    If the cohesion between particles decreases, then the particles must be undergoing a phase change that allows particles to move farther apart. This happens when a substance vaporizes and turns from liquid to gas. Any phase change that moves to the right in the diagram above requires energy to be added to the system because the substance has more energy at the end of the phase change. The phase changes are meltingvaporization (boiling), and sublimation. When energy is added, particles move faster and can break away from each other more easily as they move to a state of matter with a higher amount of energy. This is most commonly done by heating the substance. 

  • Q #3: What is the correct order of the stages of the cell cycle?

    A. G1,S,G2,M

    B. G2,S,G1,M

    C. M,S,G2,G1

    D. S,M,G1,G1

    Answer Explanation

    The cell cycle is an organized process divided into two phases: interphase and the M (mitotic) phase. During interphase, the cell grows and copies its DNA. After the cell reaches the M phase, division of the two new cells can occur. The G1, S, and G2 phases make up interphase.

    • G1: The first gap phase, during which the cell prepares to copy its DNA
    • S: The synthesis phase, during which DNA is copied
    • G2 : The second gap phase, during which the cell prepares for cell division

    It may appear that little is happening in the cell during the gap phases. Most of the activity occurs at the level of enzymes and macromolecules. The cell produces things like nucleotides for synthesizing new DNA strands, enzymes for copying the DNA, and tubulin proteins for building the mitotic spindle. During the S phase, the DNA in the cell doubles, but few other signs are obvious under the microscope. All the dramatic events that can be seen under a microscope occur during the M phase: the chromosomes move, and the cell splits into two new cells with identical nuclei.